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Transmission and Attenuation of the Dominant
Mode in Uniformly Bent Circular Hollow
Waveguides for the Infrared:

Scalar Analysis

Shin-ichi Abe and Mitsunobu Miyagi, Senior Member, IEEE

Abstract —We numeriecally evaluate electric field distributions, phase
constants, and attenuation constants of the lowest eigenmode in the
general class of uniformly bent circular hollow waveguides. The analysis
is based on a scalar equation, and numerical results are compared with
those of existing approximate theories. Numerically fitting curves of
attenuation constants are also presented.

I. INTRODUCTION

NFRARED lasers such as CO and CO, lasers have been

widely used in industry and medicine. Hollow waveguides
are potential guiding media for delivering high-powered laser
lights [1]. In the hollow waveguides which support leaky
modes or generalized surface wave modes [2], power losses
always exist even when the waveguides are straight, for outer
claddings do not function as totally reflecting media [3]. In
overmoded straight slab or circular hollow waveguides, power
losses have been fully analyzed by using the concept of
surface impedance or admittance defined at the boundary
between a hollow core and one of reflecting media [4], [5].
Several possible methods to reduce straight waveguide losses
have been proposed [4], [6]. When waveguides are bent,
losses increase additionally. Therefore, in hollow waveguides
it is very important to evaluate power losses caused by a
bend.

In uniformly bent overmoded slab hollow waveguides,
bending losses have been analyzed based on a scalar equa-
tion deduced from Maxwell’s equations [7], [8]. Expressions
of attenuation constants for lower order modes have been
explicitly presented [8]. For bent circular waveguides, several
methods have been used to predict bending losses; these are
based on ray analysis [9], mode coupling analysis [10], or
Maxwell’s equations [11], [12]. For a large bending radius,
Marcatili and Schmeltzer [11] derived expressions for attenu-
ation constants in a metallic and dielectric waveguides. How-
ever, their analyses were not rigorous and exact analyses
were made in [12] for the general class of circular hollow
waveguides including a metallic or dielectric waveguide.
Wilson et al. [13] compared the experimental results with
those predicted in [11] and [12]. They also analyzed nonuni-
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formly bent waveguides. For sharply bent waveguides, where
the electric fields are concentrated near the outer edge of
the waveguides, losses of a linearly polarized mode whose
polarization is parallel to the bending plane were discussed
in [14], where the attenuation constant was shown to be
proportional to the curvature with a proportional constant of
a normalized surface admittance or the real part of the
complex refractive index of metal. A special case where a
normalized surface admittance is equal to a normalized
surface impedance was also discussed [14], and it was also
shown that losses are proportional to the curvature. How-
ever, in these two cases and in cases reported elsewhere, the
analysis was essentially based on a slab geometry, and the
diameter of the hollow core was not taken into account; i.e.,
coupling effects between parallel and perpendicular polar-
izations to the waveguide wall were completely neglected. In
order to take the coupling effect into account, a rather
intuitive analysis was made in [15] based on a scalar analysis.
As the coupling effect was introduced by the parameter b
including a bending radius and core radius, the attenuation
constants of modes whose polarizations are parallel or per-
pendicular to the bending plane are no longer proportional
to the curvature. However, as the analysis itself is rather
intuitive, the results should be checked numerically by using
a rigorous analysis. Furthermore, the limits of mild bending
and strong bending are not evaluated numerically because
exact results have not yet been established.

In this paper, we present numerical results of field distri-
butions, phase constants, and bending losses of the lowest
eigenmode in uniformly bent circular hollow waveguides with
arbitrary bending radii. The lowest eigenmode with linear
polarization corresponds to the EH,; modes in Marcatili and
Schmeltzer’s nomenclature [11] or to the HE,; modes in the
nomenclature of [12], which is generally employed in fiber
waveguides. The analysis is based on a scalar wave equation.
We clarify the limits of the theories [12], [15] derived previ-
ously. Numerically fitting curves are also presented for the
attenuation constants of the lowest eigenmode in the general
class of overmoded circular hollow waveguides.

II. ScaLar EQUATION

We employ the toroidal coordinate system for the analysis
of the uniformly bent circular hollow waveguide shown in
Fig. 1. Here n, is the refractive index in the core region, T is
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Fig. 1. Toroidal coordinate system for bent circular hollow wave-

guides.

the core radius, and R is the bending radius. To analyze
low-loss waveguides for the transmission of high-powered
laser lights, it is assumed that 7T is sufficiently large com-
pared with the wavelength of transmitted light and that a
normalized surface impedance zqg and yqy [12] defined at
r =T is sufficiently small compared with those of the hollow
core. In addition, it is also assumed that R is sufficiently
large compared with the core radius 7, Based on these
conditions, we analyze linearly polarized modes in the circu-
lar hollow waveguides and discuss the electric fields deter-
mined from a scalar equation.

Let the axial (z axis) phase constant be B. Then; the
transverse electric field component E is determined by the
following scalar equation (see Appendix I):

PE 19E 1 ¢E - 5
? +;—2"50T+|:n0k0(1+ZECOSO)‘—B ]E=O
(1)

By solving (1) with appropriate boundary conditions, the
attenuation constants can be determined by field distribu-
tions in a core region, as described in subsection IV-A.

T

III. FieLDp DISTRIBUTION AND PHASE CONSTANT
A. Formulation

In the core region, the transverse electric field E of the
eigenmode of the bent waveguide, which is even-symmetrical
around 6 =0, can be expanded as follows [16]: '

E-ep(—jp) ¥ L A, J( )cos<ve> @)

»=0p=1

where o, is the pth zero of J v(x) except for zero and we
have assumed that fields are fully confined in the core
region. For numerical convergence, basis functions should be
carefully chosen [17], [18]. In our analysis, each term of (2)
corresponds to an eigenmode in a straight waveguide. The
expansion is convenient in evaluating the mode conversion
for mild bending.

Substituting (2) into (1) and using the orthogonal relations
of Bessel or trigonometric functions, we obtain

KyA,,+ Z (@0 41,4+ CpgAring] =0

(v=0,1,---;p=12,---) (3)

where K, and Q, are defined by

Ky =(u? =02 )(1+8,0))/%(a,,) (4)

0= 26015 0,0) [ r(0p) (017 - (5)

5.0={; (6)

and the normalized phase constant u# and the parameter b
related to curvature are defined by

Ll — ( k2 BZ)TZ

v=>0
v#0

@)
®)

It should be noted that the normalized transverse phase
constant u and expansion coefficients A,, are a function
only of b. Equation (3) can be transformed to the matrix
equation as follows:

b=(nyk,T)*T/R.

MB = 28 9)
where the symmetric matrix M is represented by
[ 1©®  NO Qe 0]
INO D N e :
M=| 0. NO 1@ NO (10)
P N @)
L 0 |

‘N i the transposed matrix of N®), and elements L$) and
N of partial matrices 1) and N® are represented by

LS/L; = vaSpq (11)
15;) = 172 Co . (12)
(1+8,0) "1 (0,,) 1) 4100, 11,4)
The vector B in (9) is defined by
FgO ]
BMD
B®
B= B® (13)
B@

whose partial vector B® is related to the expansion coeffi-
cients A4,, as

RACHES
Ji(0,2) 4,7
T (0,3) 4,3
Ji(0,4) Asg

0,5) Ays

B® = (1+5,,)"? (14)

Equation (9) means that the square of normalized transverse
phase constants #? and expansion coefficients A,, can be
determined as eigenvalues and eigenvectors of the symmetric
matrix M, respectively.
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Fig. 2. u? of the lowest eigenmode in gently bent hollow waveguides.
The solid line corresponds fo the numerical analysis. The dashed line
corresponds to the perturbation theory [12].
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Fig. 3. u? of the lowest eigenmode in hollow waveguides.

B. Normalized Transverse Phase Constant and Electric Field
Distribution of Dominant Mode

The eigenvalues and eigenvectors of (9) are numerically
solved by Jacobi’s method. How the expansion is made in (2)
and how the matrix size of M is chosen are described in
detail in Appendix IL. Fig. 2 shows u? of the lowest eigen-
mode in the gently bent waveguides. The solid line corre-
sponds to the numerical result. The dashed line corresponds
to u? of the HE,, mode predicted by the perturbation theory
of vector equations [12], which leads to

1 b? 4
u2=0'021—g";051“(1+;02—1

(15)

It should be noted that the perturbation theory evaluates u?
very precisely when b is smaller than 4. The quantity u? for
the sharply bent waveguides as well as the gently bent
waveguldes is also shown in Fig. 3. The value of u? de-
creases; i.e., the axial phase constant B increases due to
bending and becomigs negative when b is large. This is
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Fig. 4. x, and w, in bent hollow waveguides. Solid lines correspond to
the numerlcal ana1y51s Dashed lines correspond to the perturbation
theory [12]. Dot—dash lines are calculated by Marhic’s theory [19]. The
upper scale corresponds to the bending radius R for ny=1, T =05
mm, and A =10.6 pm.

because the electric field of the dominant mode is concen-
trated in'the region where the refractive index is effectively
highet than n,.

The electric field distribution is determined from expan-
sion coefficients A4,,. In order to see fleld deformations
caused by bending, We evaluate the pos1t10n x,, where the
amplitude of field becomes maximum in the x dlrectlon at
y =0, and the half width of half maximum, w,, in the y
direction at x = x,,. Fig. 4 shows X, and w, of the lowest
eigenmode. Solid lines correspond to the present theory;
dashed lines correspond to the perturbation theory [12] (see
Appendix III). It can be seen that the perturba'tion theory
can predict x, and w, very precisely when b is smaller than
4, Dotted dashed hnes correspond to Marhic’s theory [19]
(see Appendix ITI). His theory can well predict x, and w,
when b becomes large. '

IV. ATTENUATION CONSTANT
A. Formulation

Attenuation constants « of modes are determined by the
ratio of the radiated power from a hollow core to a cladding
to the transmitted power in a core region as follows [20]:

PRe[ EyH* — E, Hi ] de
200 =—F5

(17)
J[Re[E,.Hy ~ E,H}] dS

where the integrals in the numerator and the denominator
are the line integral around core-cladding boundary and the
surface integral in the core region, respectively. We consider
here the attenuation constants of modes whose polarization
direction is perpendicular or parallel to the bending plane
(x -2z plane).
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For the perpendicular polarization, one can express E,

E,, H_, and H, of lower order modes as

E,=E (18)
1 [JE,
H, =J';;(;( ayk +jBEy)
'——.—no(ﬁ)mE (19)
o
1 dH oH
= —jwn%eo (G_xy h Byx)
1 OE
=—j ks 3y (20)
Hz=i*l—(%* aE")
g\ 9x ay
1 dF
= jw_Mo r (21)
where we have assumed [12]
E,>E > E =0 (22)
H,> H,>» H,=0. (23)
Similarly, for the parallel polarization, we have
E.=E (24)
H, =n (i)mE (25)
7N
1 oF
== nokg ax (26)
1 9FE
H,=— jw_,Uuo- oy (27)
where we have assymed
lE,g>>EZ>>Ey=0 (28)
H,>H,> H, =0. (29)

On the other hand, tangential components E, and H, are
determined by the boundary conditions [12]:

@ig
Eg=——2zH 30
6 nOkOZTE z ( )
nok
6=~ : Oy"[MEz' (31)
WLy

Note that (30) and (31) can be used when nykyT > 1.
Therefore, E; and H, in the numerator of (17) are ex-
pressed by using dE /dx and dE /dy at r =T as

ztg OF
E,=j — 32
6 J’loko ax (32)
E))
A ek (33)
wpy dy

for the perpendicular polarization and

zrg OF
Ey=—j — 34
0 J”oko dy (34)
youm OF
Hy=sj—— 35
6 ]“)l%o ox (35)

for the parallel polarization. By substituting (18)—(35) into
(17), one can express attenuation constants « , (a;) of the
linearly polarized mode whose polarization is perpendicular
(parallel) to the plane of curvature as follows:

2 2

JF Jd .
L= . S 2 (36)
2nskIEIZdS
ki ff
dE ° IE |*
é o dcRe(z1g) +¢i‘—9; deRe (ym)
o= (37)

2n5kgf[|E|2ds
A

In order to separate material and structural parameters in
the above two equations, we express « ), and o of the mth
order eigenmode whose angular dependence is cos(n8) or
sin(#0) in straight waveguides by normalized forms as fol-
lows: )

a, 1 f
1
i / (39)

—— _.____+ —_—
ay ST+ f 1w g

where « is the attenuation constant of the eigenmode in
straight waveguides [4], defined by

2
Tum

ay=—""-"——Re(zp+y 40
= ko T)T (zre + y1m) (40)
and g, and g, are functions of b only and are defined by
' OE |
T 925 “ (41)
Em™= "2 T
Gnm [ [|E? dS :
/I,
IE |*
95 —| dec
T3 c| 9y )
8s= F 2 . (42)
nim |E|“dS
/]
The parameter f, defined by
f=Re(yTM)/Re(ZTE) (43)

determines a property of cladding. One can see that the
attenuation constants « , and e vary between g,ay and

85t

B. Numericat Calculations of Attenuation Constants of the
Dominant Mode

We first show the normalized attenuation constant « | /ag
of the lowest eigenmode as a function of f in Fig. 5. The
curves corresponding to f =0 and « are exactly g,, and g,
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Fig. 5. Normalized attenuation constant ¢ ;, /g of the lowest eigen-

mode in bent hollow waveguides.
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Fig. 6. g, and g, for the lowest eigenmode in gently bent hollow
waveguides. Solid lines correspond to the numerical analysis. Dashed
lines correspond to the perturbation theory, i.e., eqs. (44) and (45). The
upper scale corresponds to the bending radius R for ny=1, T=05
mm, and A =10.6 gm. ' ‘

respectively. In ordinary metallic waveguides at 10.6 um
wavelength, f is of the order of 103. On the other hand, in
dielectric-coated metallic waveguides f is of the order of 10.
As g,, is larger than g, for the lowest eigenmode, « | /o
decreases and conversely «/ag increases when f in-
creases.

Fig. 6 shows g,, and g, of the lowest eigenmode for the
gently bent waveguide. Solid lines correspond to the present
theory; dashed lines are calculated by using the perturbation
theory [12], where g,, and g, are expressed by

1 b 4 3
gm—1+§;g L+;%+§(mn—ﬂ] (44)
1 b 4 3,
gs=1+u§;g[y+;g-§(om—24. (45)

It can be seen that g,, and g, predicted by the perturbation
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Fig. 7. «¢,,, ¢, and c,, +c, for the lowest eigenmode in bent hollow

waveguides. Solid lines correspond to the numerical analysis. Dashed
lines are results calculated by eqs. (50) and (51). The upper scale
corresponds to the bending radius R for ny=1, A=10.6 um, and
T = 0.5 mm.

theory are very close to the numerical values when b is
smaller than 4.

In order to obtain more useful explicit formulas for the
attenuation constants, we express « ; and « of (36) and (37)
as follows:

1
a, = 'RT[CmRe(ZTE)"‘csRe(YTM)]

= CmaTE + CsaTM (46)
1
Y=g [c;Re(z1p) + ¢,y Re (yrm)]
= ¢ a1 + Cplirm (47)

where ¢, and ¢, are parameters depending on only » and
are defined by

AE |?

T3 é a—x* dc
e ————— (48)

2b f/lE|2 ds

2

oE

T3 Qé ay
cg=—

dy
2b //IEIZdS.

Equations (46) and (47) mean that attenuation constants a |
and e in circular waveguides are represented by an appro-
priate combination of attenuation constants of the TE (arg)
and TM modes (apy,) in sharply bent slab waveguide with
suitable weighting parameters depending on b. Although
expressions similar to (46) and (47) were given in a previous
paper [15] by assuming that ¢,,+c¢,=1 and employing a
rather intuitive analysis, no assumption has been made in
deriving (46) and (47).

Fig. 7 shows the weighting parameters c¢,, and c, of the
lowest eigenmode, which are simply obtained by multiplying

(49)
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Fig. 8. Attenuation constants (a) a and (b) a , of the lowest eigen-
mode in a hollow nickel waveguide at A =10.6 um. The solid lines
correspond to the numerical analysis. The dot—dash curves correspond
to (a) apy and (b) ayg, respectively. The small fluctuations in the
curves of (b) are caused by numerical errors arising from the small size
of the matrix used. The small circles in the figure correspond to b = 100.
The dashed curves are drawn by using numerically fitting curves of egs.
(52) and (53).

o, /2b by g,, and g,. Solid lines correspond to the present
theory; dashed lines correspond to the theory described in
the reference [15], which gives

1

cm=1--5b-1/2 (50)
1 -1/2

[ Eb . (51)

Although the theory in [15] itself is based on a rather
intuitive treatment, the agreement of the results can be
regarded as sufficient when b becomes large. The smaller
the bending radius R, the closer ¢,, approaches 1 and c;
approaches 0. In other words, the smaller the bending radius
R, the closer @ | /ayg and @ /@y approach unity. This is
because the circular boundary resembles the straight one for
the linearly polarized light as the field distribution becomes

18 , . ]
Y
> Y
=z 12t // -
/
e gt 1
= T=0. 4m
0.5
0.7
O 1 1 |
0 0.2 0.4 0.6 0.8
1/R (1/m)
(a)
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C
~
ES
E
p*

1/R (1/m)
()

Fig. 9. Attenuation constants (a) ey and (b) e, of the lowest eigen-
mode in a hollow silica waveguide at A =10.6 uwm. The solid lines, the
dashed curve, and the small circles have the same meanings as in Fig. 8.

concentrated near the outer edge of the waveguide for
sufficiently small bending radii. However, this does not sim-
ply mean that @ , or & approach arg or aqy;, respectively,
which is definitely shown in the examples described below
numerically. The ratios of attenuation constants « | /g
and « /apy in a waveguide with a large core rapidly
approach unity when bending radii are large.

In order to present explicit expressions for ¢, and c, the
numerical curves are approximated by a method of least
square. As a result, we have

cp,=1-0.231b"12-1.98p"1+5.200"%>
¢, =0.570b" 12 +1.12b7 1 +1.45p%/2

(52)
(53)

which are not distinguishable from the numerical results in
Fig. 7. We also show numerically calculated c,, +¢,. One
should note that c,, + ¢, approaches unity when b becomes
large.

Parts (a) and (b) of Fig. 8 show attenuation constants «,
and @ | in a hollow nickel waveguide (n,=1) with various
core radii. The wavelength of the light is 10.6 um and the
complex refractive index ng(n — jk) of nickel is assumed to



236 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 2, FEBRUARY 1991

(dB/m)}

Attenuation

1

0.8

0.4 0.6 1.0
1/7R (1/m)

Fig. 10. Attenuation constants o) and &, of the lowest eigenmode in
a germanium-coated nickel hollow waveguide at A = 10.6 um. The solid
lines, the dashed line, and the small circles have the same meanings as
in Fig. 8. The dot—dash curve corresponds to atg = a1y

be 7.11— j38.3 [4], where

ZTE= [(n - jK)z“l] —1/2 (54)
(n—jx)?

™ = R 55

M T g —1]” oY

When the bending radius becomes small, «; reaches differ-
ent “linear asymptotes” depending on the core radius 7 in
the range of calculations, This is mainly caused by the first
and the second terms of (52). As the sign of the second term
is negative, the asymptotes are below the dot—dash curve
defined by aqy or Re(ypy)/R. We have used the term
linear asymptote, which in an exact sense is incorrect. How-
ever, in the hollow-core diameter and bending radius which
we are concerned with, some of bending loss curves are very
similar to the linear curves. Therefore, we hereafter use the
term linear asymptote. In this example, the attenuation con-
stant @ of parallel polarization in waveguides with smaller
core radius becomes smaller than those in waveguides with
larger core radius beyond some curvature. On the other
hand, a , varies as R™'/? and there are no linear asymp-
totes in this range of bending radius. It is because Re(zg) is
sufficiently smaller than Re(yry) and also the first term of
(53) is dominant. Concerning a relation between theoretical
and experimental bending losses for the parallel polarization,
there is still a large difference. As mentioned in [15], polar-
ization conversion from the waveguide imperfections leads to
losses smaller than those predicted theoretically.

Parts (a) and (b) of Fig. 9 show attenuation constants a
and « , in a hollow silica waveguide whose complex refrac-
tive index at 10.6 pum is 2.224 — j0.102. In the mode with
parallel polarization, the bending loss curves approach rela-
tively similar asymptotes, whereas those of the mode with
perpendicular polarization are quite different from those in
a nickel waveguide and approach different linear asymptotes.

Fig. 10 shows bending losses for the germanium-coated
nickel waveguide where the waveguide is designed so that
Re{zrp) = Re(ypy) [14]; ie., the refractive index and thick-
ness of the germanium layer are 4.0 and 0.539 um, respec-

tively. In this waveguide, modes with parallel and perpendic-
ular polarizations have the same bending loss. One should
note that all asymptotes of loss curves in the waveguide are
above the dot—dash curve defined by Re(yry)/ R, which is
different from those in nickel and silica hollow waveguides.
One might still wonder why « and «, reach different
asymptotes. This is our first finding numerically.

Finally, we add a comment why we mention the properties
of the dominant mode in a bent waveguide, although the
formulation itself can be applied to any mode when the
convergence of the series expansion of (2) is ensured. First,
when the waveguide is gently bent, only a few higher order
modes are excited with a large coupling efficiency to the
dominant mode. Second, for the much stronger bend than
that treated in this paper, many modes are expected to have
nearly the same attenuation constant as seen from the resulis
in the general class of slab waveguides [8].

V. ConcLUSION

Based on the scalar equation, we have numerically evalu-
ated electric field distributions, phase constant, and attenua-
tion constants of the linearly polarized dominant eigenmode
in bent circular hollow waveguides with arbitrary bending
radii. The amounts of field shift and beam width obtained
numerically are compared with those predicted by existing
theories. Normalized forms of attenuation constants are pre-
sented for the parallel and perpendicular polarizations to the
bending plane by using structural and material parameters.
For sharply bent waveguides, useful and simple expressions
are derived for the attenuation constants which are combina-
tions of the attenuation constants of the TE and TM modes
in the corresponding slab geometry with suitable weighting
parameters.

APPENDIX I
From the following Maxwell’s equations in a medium with

a refractive index n(r, ),

VX H=jweyn?(r,0)E (A1)

~

VXE=—jougH (A2)

we can deduce
V2E + k3n®(r,0)E=~V[E-Vinn(r,0)], (A3)

where e, pg, and kg = wleguy)l/? are the dielectric con-
stant, the permeability, and the wavenumber in free space,
respectively. By employing the toroidal coordinate system in
Fig. 1 and by carrying out a large number of calculations, we
obtain [22]

2
A 4R?

V,zE,—f— k%nz(r,e)———r———2
1+ —cos8
( R® )

E,

=—V,[E, -V, Inn?(r,0)] - iK (A4)
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TABLE 1
VaLugs of v AND p UsSep IN THE NUMERICAL CALCULATIONS
TO EVALUATE EIGENVALUE AND EIGENVECTOR OF M
rOR THE Lowest EiGENMODE

v b

0 1~9
1 1~8
2 1~7
3 1~6
4 1~5
5 1~4
6 1~3
7 1~3
8 1~2
9 1

10 1

where the z dependence of exp(— jBz) is assumed and

r -2
= (1-1— R 608 0) E, (A5)

W-E,+§-[E,-V,1nn2(r,o)]} (A6)

O et

L9
+H—.

V.=#¢
t 3y

(A7)

~ | =
|Q)

J . d
—+9 =f—+
ar a0 ax

Ift is the transverse component of E, and #, é, X, and § are
unit vectors in the r, 8, x, and y directions, respectively.
When a bending radius is sufficiently large compared with a
core radius and the core radius is also sufficiently large

compared with the wavelength, we have
r
V’E, + [kgnz(r,e)(l +2§ cos 0) - BZ]E,

=—V,[E,V,Inn?(r,0)]. (A8)

The term in the right-hand side can be neglected in a region
where n(r,9) is constant. Equation (A8) was derived by
expanding

; -2 P r 2
(1+§c050) =1—ZEcos0+3(Ecost9) + (A9)

and neglecting terms of R~2 and also terms of R™! which

are not multiplied by B2.

AppENDIX 11

The matrix size of M is greatly concerned with the com-
puter time needed; i.e., the accuracy for the eigenvalue or
eigenvector and the computer time should be counterbal-
anced. There are two parameters, i.e., maximum numbers of
v and p, to be chosen. By doing several trials, we fix the
maximum value of p so that

O+ 0SS (A10)

where s is a parameter determining the total number of
terms in a double Fourier-Bessel expansion. When b be-
comes large, a larger s is required to obtain sufficient accu-
racy for the eigenvalue and eigenvector. For b less than 100,
we choose s = 30; therefore the total number of terms is 49.
In Table I, v and p values used in calculations are summa-
rized.

AprPENDIX II1

When a waveguide is bent gently, the transverse electric
field of the lowest eigenmode, i.c., the HE; mode in the
core region, is represented by [12]

b
E=Jy(ogp) + 27(1" p*)J(ogip)cos8  (All)
%01

where p is defined by r/T. Therefore, the position x
where E becomes maximum is determined by

X Xp Xp 2
Xp\ b x N2
J(]((Tol?) 20'021—7{1+b 1+(—7{i) ]

When a waveguide is bent sharply, the transverse electric
field in the core region is represented by [19]

p

(A12)

9 1
E=Ai [~(2b)1/3§ - é—w] exp ( - Eblﬂn?—) (A13)

where Ai is the Airy function; ¢ is defined by x /T —[1—
(y/T)?1"/% and n by y / T. Therefore, x,, is expressed by

X 9
—p=1—(2b)—1/3(ai+§~n') (A14)

T
where af is equal to —1.01879 [21].
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